Part Number Hot Search : 
420E212 0M10X20 KBPC1 BF904 M27C40 1N4743A MC330 IRG4BC
Product Description
Full Text Search
 

To Download MAX19997AETX Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-4288; Rev 0; 10/08
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
General Description
The MAX19997A dual downconversion mixer is a versatile, highly integrated diversity downconverter that provides high linearity and low noise figure for a multitude of 1800MHz to 2900MHz base-station applications. The MAX19997A fully supports both low- and high-side LO injection architectures for the 2300MHz to 2900MHz WiMAXTM, LTE, WCS, and MMDS bands, providing 8.7dB gain, +24dBm input IP3, and 10.3dB NF in the low-side configuration, and 8.7dB gain, +24dBm input IP3, and 10.4dB NF in the high-side configuration. Highside LO injection architectures can be further extended down to 1800MHz with the addition of one tuning element (a shunt inductor) on each RF port. The device integrates baluns in the RF and LO ports, an LO buffer, two double-balanced mixers, and a pair of differential IF output amplifiers. The MAX19997A requires a typical LO drive of 0dBm and a supply current guaranteed below 420mA to achieve the targeted linearity performance. The MAX19997A is available in a compact 6mm x 6mm, 36-pin thin QFN lead-free package with an exposed pad. Electrical performance is guaranteed over the extended temperature range, from TC = -40C to +85C.
Features
o 1800MHz to 2900MHz RF Frequency Range o 1950MHz to 3400MHz LO Frequency Range o 50MHz to 500MHz IF Frequency Range o Supports Both Low-Side and High-Side LO Injection o 8.7dB Conversion Gain o +24dBm Input IP3 o 10.3dB Noise Figure o +11.3dBm Input 1dB Compression Point o 70dBc Typical 2 x 2 Spurious Rejection at PRF = -10dBm o Dual Channels Ideal for Diversity Receiver Applications o Integrated LO Buffer o Integrated LO and RF Baluns for Single-Ended Inputs o Low -3dBm to +3dBm LO Drive o Pin Compatible with the MAX19999 3000MHz to 4000MHz Mixer o Pin Similar to the MAX9995/MAX9995A and MAX19995/MAX19995A 1700MHz to 2200MHz Mixers and the MAX9985/MAX9985A and MAX19985/MAX19985A 700MHz to 1000MHz Mixers o 42dB Channel-to-Channel Isolation o Single +5.0V or +3.3V Supply o External Current-Setting Resistors Provide Option for Operating Device in Reduced-Power/ReducedPerformance Mode
MAX19997A
Applications
2.3GHz WCS Base Stations 2.5GHz WiMAX and LTE Base Stations 2.7GHz MMDS Base Stations UMTS/WCDMA and cdma2000(R) 3G Base Stations PCS1900 and EDGE Base Stations PHS/PAS Base Stations Fixed Broadband Wireless Access Wireless Local Loop Private Mobile Radios Military Systems
Ordering Information
PART MAX19997AETX+ MAX19997AETX+T TEMP RANGE -40C to +85C -40C to +85C PIN-PACKAGE 36 Thin QFN-EP* 36 Thin QFN-EP*
+Denotes a lead-free/RoHS-compliant package. *EP = Exposed pad. T = Tape and reel.
WiMAX is a trademark of WiMAX Forum. cdma2000 is a registered trademark of Telecommunications Industry Association.
Pin Configuration/Functional Block Diagram appears at end of data sheet.
1
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer MAX19997A
ABSOLUTE MAXIMUM RATINGS
VCC to GND ...........................................................-0.3V to +5.5V RF_, LO to GND.....................................................-0.3V to +0.3V IFM_, IFD_, IFM_SET, IFD_SET, LO_ADJ_M, LO_ADJ_ to GND ...................................-0.3V to (VCC + 0.3V) RF_, LO Input Power ......................................................+15dBm RF_, LO Current (RF and LO is DC shorted to GND through balun)................................... ...50mA Continuous Power Dissipation (Note 1) ..............................8.7W JA (Notes 2, 3)..............................................................+38C/W JC (Notes 1, 3)...............................................................7.4C/W Operating Case Temperature Range (Note 4) ...................................................TC = -40C to +85C Junction Temperature ......................................................+150C Storage Temperature Range .............................-65C to +150C Lead Temperature (soldering, 10s) .................................+300C
Note 1: Based on junction temperature TJ = TC + (JC x VCC x ICC). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150C. Note 2: Junction temperature TJ = TA + (JC x VCC x ICC). This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150C. Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
+5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit optimized for the standard RF band (see Table 1), no input RF or LO signals applied, VCC = +4.75V to +5.25V, TC = -40C to +85C. Typical values are at VCC = +5.0V, TC = +25C, unless otherwise noted. R1, R4 = 750, R2, R5 = 698.)
PARAMETER Supply Voltage Supply Current SYMBOL VCC ICC Total supply current CONDITIONS MIN 4.75 TYP 5.00 388 MAX 5.25 420 UNITS V mA
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit optimized for the standard RF band (see Table 1), no input RF or LO signals applied, VCC = +3.0V to +3.6V, TC = -40C to +85C. Typical values are at VCC = +3.3V, TC = +25C, unless otherwise noted. R1, R4 = 1.1k, R2, R5 = 845.)
PARAMETER Supply Voltage Supply Current SYMBOL VCC ICC Total supply current, VCC = +3.3V CONDITIONS MIN 3.0 TYP 3.3 279 MAX 3.6 310 UNITS V mA
2
_______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER RF Frequency Without External Tuning SYMBOL fRF (Note 5) See Table 2 for an outline of tuning elements optimized for 1950MHz operation; optimization at other frequencies within the 1800MHz to 2400MHz range can be achieved with different component values; contact the factory for details (Notes 5, 6) Using Mini-Circuits TC4-1W-17 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6) Using alternative Mini-Circuits TC4-1W-7A 4:1 transformer, IF matching components affect the IF frequency range (Notes 5, 6) LO Drive Level PLO CONDITIONS MIN 2400 TYP MAX 2900 UNITS MHz
MAX19997A
RF Frequency with External Tuning
fRF
1800
2400
MHz
LO Frequency
fLO
1950
3400
MHz
100
500 MHz
IF Frequency
fIF
50
250
-3
+3
dBm
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven from 50 sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 2650MHz to 3250MHz, fIF = 350MHz, fRF < fLO, TC = -40C to +85C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2950MHz, fIF = 350MHz, TC = +25C, unless otherwise noted.) (Note 7)
PARAMETER Conversion Gain SYMBOL GC CONDITIONS fRF = 2400MHz to 2900MHz, TC = +25C (Notes 8, 9, 10) fRF = 2305MHz to 2360MHz fRF = 2500MHz to 2570MHz Conversion Gain Flatness fRF = 2570MHz to 2620MHz fRF = 2500MHz to 2690MHz fRF = 2700MHz to 2900MHz Gain Variation Over Temperature Input Compression Point TCCG IP1dB fRF = 2300MHz to 2900MHz, TC = -40C to +85C (Notes 8, 9, 11) fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone (Notes 8, 9) Third-Order Input Intercept Point IIP3 fRF = 2600MHz, fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone, TC = +25C (Notes 8, 9) fRF1 - fRF2 = 1MHz, TC = -40C to +85C 9.6 22.0 MIN 8.1 TYP 8.7 0.15 0.15 0.1 0.15 0.15 -0.01 11.3 24 dBm 22.5 24 dB/C dBm dB MAX 9.3 UNITS dB
Third-Order Input Intercept Point Variation Over Temperature
0.3
dBm
_______________________________________________________________________________________
3
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer MAX19997A
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued)
(Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven from 50 sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 2650MHz to 3250MHz, fIF = 350MHz, fRF < fLO, TC = -40C to +85C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2950MHz, fIF = 350MHz, TC = +25C, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS Single sideband, no blockers present fRF = 2400MHz to 2900MHz (Note 6, 8, 10) Noise Figure NFSSB Single sideband, no blockers present, fRF = 2400MHz to 2900MHz , TC = +25C (Note 6, 8, 10) Single sideband, no blockers present, TC = -40C to +85C fBLOCKER = 2412MHz, PBLOCKER = 8dBm, fRF = 2600MHz, fLO = 2950MHz, PLO = 0dBm, VCC = +5.0V, TC = +25C (Notes 8, 12) fRF = 2600MHz, fLO = 2950MHz, PRF = -10dBm, fSPUR = fLO - 175MHz (Note 8) 2LO-2RF Spur 2x2 fRF = 2600MHz, fLO = 2950MHz, PRF = -5dBm, fSPUR = fLO - 175MHz (Notes 8, 9) fRF = 2600MHz, fLO = 2950MHz, PRF = -10dBm, fSPUR = fLO - 116.67MHz, TC = +25C (Note 8) 3LO-3RF Spur 3x3 fRF = 2600MHz, fLO = 2950MHz, PRF = -5dBm, fSPUR = fLO - 116.67MHz, TC = +25C (Notes 8, 9) RF Input Return Loss LO Input Return Loss IF Output Impedance ZIF LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50, LO driven by 50 source, IF transformed to 50 using external components shown in the Typical Application Circuit 63 74 57 64 62 MIN TYP 10.4 MAX 12.5 dB 10.4 11.4 UNITS
Noise Figure Temperature Coefficient Noise Figure Under Blocking Conditions
TCNF
0.018
dB/C
NFB
22.5
25
dB
69 dBc
73
84 dBc
14 13 200
dB dB
IF Output Return Loss
21
dB
4
_______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued)
(Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven from 50 sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 2650MHz to 3250MHz, fIF = 350MHz, fRF < fLO, TC = -40C to +85C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2950MHz, fIF = 350MHz, TC = +25C, unless otherwise noted.) (Note 7)
PARAMETER RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port RFMAIN (RFDIV) converted power measured at IFDIV (IFMAIN) relative to IFMAIN (IFDIV), all unused ports terminated to 50 (Notes 8, 9) SYMBOL CONDITIONS MIN TYP 25 -28 -33 -18.5 MAX UNITS dB dBm dBm dBm
MAX19997A
Channel Isolation
38.5
43
dB
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven from 50 sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 1950MHz to 2550MHz, fIF = 350MHz, fRF > fLO, TC = -40C to +85C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz, fIF = 350MHz, TC = +25C, unless otherwise noted.) (Note 7)
PARAMETER Conversion Gain SYMBOL GC CONDITIONS fRF = 2400MHz to 2900MHz, TC = +25C (Notes 8, 9, 10) fRF = 2305MHz to 2360MHz fRF = 2500MHz to 2570MHz Conversion Gain Flatness fRF = 2570MHz to 2620MHz fRF = 2500MHz to 2690MHz fRF = 2700MHz to 2900MHz Gain Variation Over Temperature Input Compression Point TCCG IP1dB fRF = 2300MHz to 2900MHz, TC = -40C to +85C (Notes 6, 8, 11) fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone (Notes 8, 9) Third-Order Input Intercept Point IIP3 fRF = 2600MHz, fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone, TC = +25C (Notes 8, 9) fRF1 - fRF2 = 1MHz, TC = -40C to +85C 9.6 21.6 MIN 8.1 TYP 8.7 0.2 0.15 0.2 0.25 0.25 -0.01 11.3 23 dB/C dBm dBm dB MAX 9.3 UNITS dB
22
23.8
dBm
Third-Order Input Intercept Point Variation Over Temperature
0.3
dBm
_______________________________________________________________________________________
5
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer MAX19997A
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued)
(Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven from 50 sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 1950MHz to 2550MHz, fIF = 350MHz, fRF > fLO, TC = -40C to +85C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz, fIF = 350MHz, TC = +25C, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS Single sideband, no blockers present fRF = 2400MHz to 2900MHz (Notes 6, 8) Noise Figure NFSSB Single sideband, no blockers present, fRF = 2400MHz to 2900MHz, TC = +25C (Notes 6, 8) Single sideband, no blockers present, TC = -40C to +85C fBLOCKER = 2793MHz, PBLOCKER = 8dBm, fRF = 2600MHz, fLO = 2250MHz, PLO = 0dBm, Vcc = +5.0V, TC = +25C (Notes 6, 8, 12) fRF = 2600MHz, fLO = 2250MHz, PRF = -10dBm, fSPUR = fLO + 175MHz, TC = +25C (Note 8) 2RF-2LO Spur 2x2 fRF = 2600MHz, fLO = 2250MHz, PRF = -5dBm, fSPUR = fLO + 175MHz, TC = +25C (Notes 8, 9) fRF = 2600MHz, fLO = 2250MHz, PRF = -10dBm, fSPUR = fLO + 116.67MHz, TC = +25C (Note 8) 3RF-3LO Spur 3x3 fRF = 2600MHz, fLO = 2250MHz, PRF = -5dBm, fSPUR = fLO + 116.67MHz, TC = +25C (Notes 8, 9) RF Input Return Loss LO Input Return Loss IF Output Impedance ZIF LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50, LO driven by 50 source, IF transformed to 50 using external components shown in the Typical Application Circuit 68 73 57 62 MIN TYP 10.3 MAX 13.0 dB 10.3 11.3 UNITS
Noise Figure Temperature Coefficient Noise Figure Under Blocking Conditions
TCNF
0.018
dB/C
NFB
22
25
dB
62
67 dBc
78
83 dBc
16 11.5 200
dB dB
IF Output Return Loss
20
dB
6
_______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued)
(Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven from 50 sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 1950MHz to 2550MHz, fIF = 350MHz, fRF > fLO, TC = -40C to +85C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz, fIF = 350MHz, TC = +25C, unless otherwise noted.) (Note 7)
PARAMETER RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port RFMAIN (RFDIV) converted power measured at IFDIV (IFMAIN) relative to IFMAIN (IFDIV), all unused ports terminated to 50 (Notes 8, 9) (Notes 8, 9) SYMBOL CONDITIONS MIN TYP 23.5 -31 -27 -9.6 -24 MAX UNITS dB dBm dBm dBm
MAX19997A
Channel Isolation
38.5
42
dB
+3.3V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit optimized for the standard RF band (see Table 1). Typical values are at VCC = +3.3V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz, fIF = 350MHz, TC = +25C, unless otherwise noted.) (Note 7)
PARAMETER Conversion Gain SYMBOL GC (Note 9) fRF = 2305MHz to 2360MHz fRF = 2500MHz to 2570MHz Conversion Gain Flatness fRF = 2570MHz to 2620MHz fRF = 2500MHz to 2690MHz fRF = 2700MHz to 2900MHz Gain Variation Over Temperature Input Compression Point Third-Order Input Intercept Point Third-Order Input Intercept Variation Over Temperature Noise Figure Noise Figure Temperature Coefficient NFSSB TCNF TCCG IP1dB IIP3 fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone fRF1 - fRF2 = 1MHz, TC = -40C to +85C Single sideband, no blockers present Single sideband, no blockers present, TC = -40C to +85C fRF = 2300MHz to 2900MHz, TC = -40C to +85C CONDITIONS MIN TYP 8.5 0.2 0.15 0.15 0.25 0.15 -0.01 7.7 19.7 0.5 9.7 0.018 dB/C dBm dBm dBm dB dB/C dB MAX UNITS dB
_______________________________________________________________________________________
7
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer MAX19997A
+3.3V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued)
(Typical Application Circuit optimized for the standard RF band (see Table 1). Typical values are at VCC = +3.3V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz, fIF = 350MHz, TC = +25C, unless otherwise noted.) (Note 7)
PARAMETER 2RF-2LO Spur 3RF-3LO Spur RF Input Return Loss LO Input Return Loss IF Output Impedance ZIF SYMBOL 2x2 3x3 CONDITIONS PRF = -10dBm, fSPUR = fLO + 175MHz PRF = -5dBm, fSPUR = fLO + 175MHz PRF = -10dBm, fSPUR = fLO + 116.67MHz PRF = -5dBm, fSPUR = fLO + 116.67MHz LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50, LO driven by 50 source, IF transformed to 50 using external components shown in the Typical Application Circuit MIN TYP 74 69 74 64 16 11 200 MAX UNITS dBc dBc dB dB
IF Output Return Loss
26
dB
RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port RFMAIN (RFDIV) converted power measured at IFDIV (IFMAIN) relative to IFMAIN (IFDIV), all unused ports terminated to 50
25 -36 -31 -13.5
dB dBm dBm dBm
Channel Isolation
42
dB
Note 5:
Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics. Note 6: Not production tested. Note 7: All limits reflect losses of external components, including a 0.8dB loss at fIF = 350MHz due to the 4:1 impedance transformer. Output measurements taken at the IF outputs of Typical Application Circuit. Note 8: Guaranteed by design and characterization. Note 9: 100% production tested for functional performance. Note 10: RF frequencies below 2400MHz require external RF tuning similar to components listed in Table 2. Note 11: Maximum reliable continuous input power applied to the RF or IF port of this device is +12dBm from a 50 source. Note 12: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of all SNR degradations in the mixer, including the LO noise as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
8
_______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc01
MAX19997A
CONVERSION GAIN vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc02
CONVERSION GAIN vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc03
11 TC = -30C 10 CONVERSION GAIN (dB)
11
11
10 CONVERSION GAIN (dB)
10 CONVERSION GAIN (dB)
9
9
9
8 TC = +25C TC = +85C 6 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
8 PLO = -3dBm, 0dBm, +3dBm 7
8 VCC = 4.75V, 5.0V, 5.25V
7
7
6 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
6 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc04
INPUT IP3 vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
PRF = -5dBm/TONE 25 INPUT IP3 (dBm)
MAX19997A toc05
INPUT IP3 vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
PRF = -5dBm/TONE 25 INPUT IP3 (dBm) VCC = 5.0V 24
MAX19997A toc06
26 PRF = -5dBm/TONE 25 INPUT IP3 (dBm) TC = +25C 24 TC = +85C
26
26
VCC = 5.25V
24
23 TC = -30C 22 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
23
PLO = -3dBm, 0dBm, +3dBm
23
VCC = 4.75V
22 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
22 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
NOISE FIGURE vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc07
NOISE FIGURE vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc08
NOISE FIGURE vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc09
13 TC = +85C 12 NOISE FIGURE (dB) 11 10 9 TC = +25C 8 7 2200 2400 2600 2800 RF FREQUENCY (MHz) TC = -30C
13 12 NOISE FIGURE (dB) 11 10 9 8 7 PLO = -3dBm, 0dBm, +3dBm
13 12 NOISE FIGURE (dB) 11 10 9 8 7 VCC = 4.75V, 5.0V, 5.25V
3000
2200
2400 2600 2800 RF FREQUENCY (MHz)
3000
2200
2400 2600 2800 RF FREQUENCY (MHz)
3000
_______________________________________________________________________________________
9
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
2LO-2RF RESPONSE vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc10
2LO-2RF RESPONSE vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
PRF = -5dBm 2LO-2RF RESPONSE (dBc) PLO = +3dBm 70
MAX19997A toc11
2LO-2RF RESPONSE vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
PRF = -5dBm 2LO-2RF RESPONSE (dBc)
MAX19997A toc12 MAX19997A toc18 MAX19997A toc15
80 PRF = -5dBm 2LO-2RF RESPONSE (dBc)
80
80
70 TC = +85C
70
60 TC = +25C TC = -30C 50 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
60 PLO = 0dBm PLO = -3dBm 50 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
60 VCC = 4.75V, 5.0V, 5.25V 50 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
3LO-3RF RESPONSE vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc13
3LO-3RF RESPONSE vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc14
3LO-3RF RESPONSE vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
95 PRF = -5dBm 3LO-3RF RESPONSE (dBc) 85
95 PRF = -5dBm 3LO-3RF RESPONSE (dBc) 85 TC = -30C 75
95 PRF = -5dBm 3LO-3RF RESPONSE (dBc) 85
75
75
65 TC = +25C, +85C 55 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
65 PLO = -3dBm, 0dBm, +3dBm 55 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
65
VCC = 4.75V, 5.0V, 5.25V
55 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
INPUT P1dB vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc16
INPUT P1dB vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc17
INPUT P1dB vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
13 VCC = 5.25V 12 INPUT P1dB (dBm) VCC = 5.0V
13 TC = +85C 12 INPUT P1dB (dBm)
13
12 INPUT P1dB (dBm)
11
11 PLO = -3dBm, 0dBm, +3dBm 10
11
10 TC = -30C 9 2200
TC = +25C
10
VCC = 4.75V
9 2400 2600 2800 RF FREQUENCY (MHz) 3000 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
9 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
10
______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
CHANNEL ISOLATION vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc19
MAX19997A
CHANNEL ISOLATION vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc20
CHANNEL ISOLATION vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc21
60 55 CHANNEL ISOLATION (dB) 50 45 40 35 30 2200 2400 2600 2800 RF FREQUENCY (MHz) TC = -30C, +25C, +85C
60 55 CHANNEL ISOLATION (dB) 50 45 40 PLO = -3dBm, 0dBm, +3dBm 35 30
60 55 CHANNEL ISOLATION (dB) 50 45 40 VCC = 4.75V, 5.0V, 5.25V 35 30
3000
2200
2400 2600 2800 RF FREQUENCY (MHz)
3000
2200
2400 2600 2800 RF FREQUENCY (MHz)
3000
LO LEAKAGE AT IF PORT vs. LO FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc22
LO LEAKAGE AT IF PORT vs. LO FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc23
LO LEAKAGE AT IF PORT vs. LO FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc24
0
0 PLO = -3dBm, 0dBm, +3dBm -10
0
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT (dBm)
-10 TC = -30C -20
-10
-20
-20
-30
TC = +25C, +85C
-30
-30
VCC = 4.75V, 5.0V, 5.25V
-40 2550 2750 2950 3150 LO FREQUENCY (MHz) 3350
-40 2550 2750 2950 3150 LO FREQUENCY (MHz) 3350
-40 2550 2750 2950 3150 LO FREQUENCY (MHz) 3350
RF-TO-IF ISOLATION vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc25
RF-TO-IF ISOLATION vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc26
RF-TO-IF ISOLATION vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc27
40
40
40
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
TC = +85C 30
PLO = -3dBm, 0dBm, +3dBm 30
VCC = 4.75V, 5.0V, 5.25V 30
20 TC = -30C TC = +25C
20
20
10 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
10 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
10 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
______________________________________________________________________________________
11
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc28
LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc29
LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc30
-10 LO LEAKAGE AT RF PORT (dBm) TC = -30C, +25C, +85C -20
-10 LO LEAKAGE AT RF PORT (dBm)
-10 LO LEAKAGE AT RF PORT (dBm)
-20
-20
-30
-30 PLO = -3dBm, 0dBm, +3dBm -40
-30 VCC = 4.75V, 5.0V, 5.25V -40
-40
-50 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz)
-50 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz)
-50 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc31
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc32
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc33
-10 2LO LEAKAGE AT RF PORT (dBm)
-10 2LO LEAKAGE AT RF PORT (dBm)
-10 2LO LEAKAGE AT RF PORT (dBm)
-20 TC = -30C, +25C, +85C -30
-20 PLO = -3dBm, 0dBm, +3dBm -30
-20 VCC = 4.75V, 5.0V, 5.25V -30
-40
-40
-40
-50 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz)
-50 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz)
-50 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz)
12
______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
RF PORT RETURN LOSS vs. RF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc34
MAX19997A
IF PORT RETURN LOSS vs. IF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc35
IF PORT RETURN LOSS vs. IF FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc36
0 fIF = 350MHz 5 RF PORT RETURN LOSS (dB) 10 15 20 PLO = -3dBm, 0dBm, +3dBm 25 30 2200 2400 2600 2800 RF FREQUENCY (MHz)
0 fLO = 2600MHz 5 IF PORT RETURN LOSS (dB) 10 15 20 25 30
0 5 IF PORT RETURN LOSS (dB) 10 15 20 25 fLO = 2600MHz 30 fLO = 2950MHz 320 410 fLO = 2350MHz
VCC = 4.75V, 5.0V, 5.25V
3000
50
140
230
320
410
500
50
140
230
500
IF FREQUENCY (MHz)
IF FREQUENCY (MHz)
LO PORT RETURN LOSS vs. LO FREQUENCY (LO > RF, STANDARD RF BAND)
MAX19997A toc37
SUPPLY CURRENT vs. TEMPERATURE (TC) (LO > RF, STANDARD RF BAND)
VCC = 5.25V 390 SUPPLY CURRENT (mA)
MAX19997A toc38
0
400
LO PORT RETURN LOSS (dB)
5
PLO = +3dBm
10
380
15 PLO = -3dBm 20 PLO = 0dBm
370 VCC = 4.75V
VCC = 5.0V
360
25 1900 2150 2400 2650 2900 3150 3400 LO FREQUENCY (MHz)
350 -35 -15 5 25 45 65 85 TEMPERATURE (C)
______________________________________________________________________________________
13
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc39
CONVERSION GAIN vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc40
CONVERSION GAIN vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc41
11 TC = -30C
11
11
10 CONVERSION GAIN (dB)
10 CONVERSION GAIN (dB)
10 CONVERSION GAIN (dB)
9
9
9
8 TC = +85C
8 PLO = -3dBm, 0dBm, +3dBm
8 VCC = 4.75V, 5.0V, 5.25V
7
TC = +25C
7
7
6 1800 1900 2000 2100 2200 2300 RF FREQUENCY (MHz)
6 1800 1900 2000 2100 2200 2300 RF FREQUENCY (MHz)
6 1800 1900 2000 2100 2200 2300 RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc42
INPUT IP3 vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc43
INPUT IP3 vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
PRF = -5dBm/TONE 25 INPUT IP3 (dBm)
MAX19997A toc44 MAX19997A toc47
26 PRF = -5dBm/TONE 25 INPUT IP3 (dBm) TC = +25C 24 TC = +85C
26 PRF = -5dBm/TONE 25 INPUT IP3 (dBm)
26
VCC = 5.25V
24
24
23 TC = -30C 22 1800 1900 2000 2100 2200 2300 RF FREQUENCY (MHz)
23 PLO = -3dBm, 0dBm, +3dBm 22 1800 1900 2000 2100 2200 2300 RF FREQUENCY (MHz)
23
VCC = 5.0V VCC = 4.75V
22 1800 1900 2000 2100 2200 2300 RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc45
NOISE FIGURE vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc46
NOISE FIGURE vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
13 12 NOISE FIGURE (dB) 11 10 9 8 7 VCC = 4.75V, 5.0V, 5.25V
13 TC = +85C 12 NOISE FIGURE (dB) 11 10 9 8 7 1800 1900 2000 2100 2200 TC = +25C TC = -30C
13 12 NOISE FIGURE (dB) 11 10 9 8 7 PLO = -3dBm, 0dBm, +3dBm
2300
1800
1900
2000
2100
2200
2300
1800
1900
2000
2100
2200
2300
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
14
______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
2LO-2RF RESPONSE vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc48
MAX19997A
2LO-2RF RESPONSE vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc49
2LO-2RF RESPONSE vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
PRF = -5dBm 2LO-2RF RESPONSE (dBc)
MAX19997A toc50 MAX19997A toc56 MAX19997A toc53
70 TC = +85C 2LO-2RF RESPONSE (dBc) PRF = -5dBm
70 PRF = -5dBm 2LO-2RF RESPONSE (dBc)
70
60
60
60
50 TC = -30C
TC = +25C
50
PLO = -3dBm, 0dBm, +3dBm
50 VCC = 4.75V, 5.0V, 5.25V
40 1800 1900 2000 2100 2200 2300 RF FREQUENCY (MHz)
40 1800 1900 2000 2100 2200 2300 RF FREQUENCY (MHz)
40 1800 1900 2000 2100 2200 2300 RF FREQUENCY (MHz)
3LO-3RF RESPONSE vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc51
3LO-3RF RESPONSE vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc52
3LO-3RF RESPONSE vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
95 PRF = -5dBm 3LO-3RF RESPONSE (dBc) 85
95 PRF = -5dBm 3LO-3RF RESPONSE (dBc) 85
95 PRF = -5dBm 3LO-3RF RESPONSE (dBc) 85
TC = -30C
75
75
75
65 TC = +25C, +85C 55 1800 1900 2000 2100 2200 2300 RF FREQUENCY (MHz)
65
PLO = -3dBm, 0dBm, +3dBm
65
VCC = 4.75V, 5.0V, 5.25V
55 1800 1900 2000 2100 2200 2300 RF FREQUENCY (MHz)
55 1800 1900 2000 2100 2200 2300 RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc54
INPUT P1dB vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc55
INPUT P1dB vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
13
13 TC = +85C 12 INPUT P1dB (dBm)
13
12 INPUT P1dB (dBm)
11
11
INPUT P1dB (dBm)
PLO = -3dBm, 0dBm, +3dBm
12
VCC = 5.0V
VCC = 5.25V
11
10 TC = -30C 9 1800 1900 2000 2100 2200 2300 RF FREQUENCY (MHz) TC = +25C
10
10 VCC = 4.75V
9 1800 1900 2000 2100 2200 2300 RF FREQUENCY (MHz)
9 1800 1900 2000 2100 2200 2300 RF FREQUENCY (MHz)
______________________________________________________________________________________
15
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
CHANNEL ISOLATION vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc57
CHANNEL ISOLATION vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc58
CHANNEL ISOLATION vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc59
60 55 CHANNEL ISOLATION (dB) 50 45 40 TC = -30C, +25C, +85C 35 30 1800 1900 2000 2100 2200
60 55 CHANNEL ISOLATION (dB) 50 45 40 PLO = -3dBm, 0dBm, +3dBm 35 30
60 55 CHANNEL ISOLATION (dB) 50 45 40 VCC = 4.75V, 5.0V, 5.25V 35 30
2300
1800
1900
2000
2100
2200
2300
1800
1900
2000
2100
2200
2300
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc60
LO LEAKAGE AT IF PORT vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc61
LO LEAKAGE AT IF PORT vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc62
0
0
0
LO LEAKAGE AT IF PORT (dBm)
-10
-10
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT (dBm)
-10
-20
TC = -30C, +25C, +85C
-20
PLO = -3dBm, 0dBm, +3dBm
-20
VCC = 4.75V, 5.0V, 5.25V
-30 2150 2250 2350 2450 2550 2650 LO FREQUENCY (MHz)
-30 2150 2250 2350 2450 2550 2650 LO FREQUENCY (MHz)
-30 2150 2250 2350 2450 2550 2650 LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc63
RF-TO-IF ISOLATION vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc64
RF-TO-IF ISOLATION vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc65
30
30
30
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
TC = +85C
20
20
RF-TO-IF ISOLATION (dB)
PLO = -3dBm, 0dBm, +3dBm
VCC = 4.75V, 5.0V, 5.25V
20
TC = +25C
TC = -30C
10 1800 1900 2000 2100 2200 RF FREQUENCY (MHz) 2300
10 1800 1900 2000 2100 2200 RF FREQUENCY (MHz) 2300
10 1800 1900 2000 2100 2200 RF FREQUENCY (MHz) 2300
16
______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc66
MAX19997A
LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc67
LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc68
-10 LO LEAKAGE AT RF PORT (dBm)
-10 LO LEAKAGE AT RF PORT (dBm)
-10 LO LEAKAGE AT RF PORT (dBm)
-20
-20
-20
-30
-30
-30
-40
TC = -30C, +25C, +85C
-40
PLO = -3dBm, 0dBm, +3dBm
-40
VCC = 4.75V, 5.0V, 5.25V
-50 2300 2520 2740 2960 3180 LO FREQUENCY (MHz) 3400
-50 2300 2520 2740 2960 3180 LO FREQUENCY (MHz) 3400
-50 2300 2520 2740 2960 3180 LO FREQUENCY (MHz) 3400
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc69
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc70
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc71
-10 2LO LEAKAGE AT RF PORT (dBm)
-10 2LO LEAKAGE AT RF PORT (dBm)
-10 2LO LEAKAGE AT RF PORT (dBm)
-20
TC = -30C, +25C, +85C
-20
PLO = -3dBm, 0dBm, +3dBm
-20
VCC = 4.75V, 5.0V, 5.25V
-30
-30
-30
-40
-40
-40
-50 2300 2520 2740 2960 3180 LO FREQUENCY (MHz) 3400
-50 2300 2520 2740 2960 3180 LO FREQUENCY (MHz) 3400
-50 2300 2520 2740 2960 3180 LO FREQUENCY (MHz) 3400
______________________________________________________________________________________
17
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
RF PORT RETURN LOSS vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc72
IF PORT RETURN LOSS vs. IF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc73
IF PORT RETURN LOSS vs. IF FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc74
0 fIF = 350MHz RF PORT RETURN LOSS (dB) 5 10 15 20 PLO = -3dBm, 0dBm, +3dBm 25 30 1800 1900 2000 2100 2200 RF FREQUENCY (MHz)
0 fLO = 2600MHz 5 IF PORT RETURN LOSS (dB) 10 15 20 25 30 VCC = 4.75V, 5.0V, 5.25V
0 5 IF PORT RETURN LOSS (dB) 10 15 20 25 30 fLO = 2600MHz fLO = 2950MHz fLO = 2350MHz
2300
50
140
230 320 410 IF FREQUENCY (MHz)
500
50
140
230 320 410 IF FREQUENCY (MHz)
500
LO PORT RETURN LOSS vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND)
MAX19997A toc75
SUPPLY CURRENT vs. TEMPERATURE (TC) (LO > RF, EXTENDED RF BAND)
VCC = 5.25V 390 SUPPLY CURRENT (mA)
MAX19997A toc76
0 PLO = +3dBm
400
LO PORT RETURN LOSS (dB)
5
10
380
15 PLO = -3dBm 20 PLO = 0dBm
370 VCC = 5.0V 360 VCC = 4.75V
25 1900 2150 2400 2650 2900 LO FREQUENCY (MHz) 3150 3400
350 -35 -15 5 25 45 TEMPERATURE (C) 65 85
18
______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
TC = -30C 10 CONVERSION GAIN (dB)
MAX19997A toc77
MAX19997A
CONVERSION GAIN vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc78
CONVERSION GAIN vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc79
11
11
11
10 CONVERSION GAIN (dB)
10 CONVERSION GAIN (dB)
9
9
9
8 TC = +25C TC = +85C 6 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
8 PLO = -3dBm, 0dBm, +3dBm 7
8 VCC = 4.75V, 5.0V, 5.25V
7
7
6 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
6 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
INPUT IP3 vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc80
INPUT IP3 vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc81
INPUT IP3 vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
PRF = -5dBm/TONE
MAX19997A toc82 MAX19997A toc85
26 TC = +85C 25 INPUT IP3 (dBm)
PRF = -5dBm/TONE
26
26
PRF = -5dBm/TONE
25 INPUT IP3 (dBm)
INPUT IP3 (dBm)
TC = +25C 24
PLO = -3dBm, 0dBm, +3dBm
25
24
24
23 TC = -30C 22 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
23
23 VCC = 4.75V, 5.0V, 5.25V
22 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
22 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
NOISE FIGURE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
TC = +85C 12 NOISE FIGURE (dB) 11 10 9 8 7 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 TC = +25C TC = -30C
MAX19997A toc83
NOISE FIGURE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc84
NOISE FIGURE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
13 12 NOISE FIGURE (dB) 11 10 9 8 7 VCC = 4.75V, 5.0V, 5.25V
13
13 12 NOISE FIGURE (dB) 11 10 9 8 7 2200 2400 2600 2800 RF FREQUENCY (MHz) PLO = -3dBm, 0dBm, +3dBm
3000
2200
2400 2600 2800 RF FREQUENCY (MHz)
3000
______________________________________________________________________________________
19
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
2RF-2LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc86
2RF-2LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc87
2RF-2LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
PRF = -5dBm
MAX19997A toc88 MAX19997A toc94 MAX19997A toc91
80 TC = +85C 2RF-2LO RESPONSE (dBc)
PRF = -5dBm
80 PLO = 0dBm 2RF-2LO RESPONSE (dBc)
PRF = -5dBm
80
70
70
2RF-2LO RESPONSE (dBc)
PLO = +3dBm
70
VCC = 4.75V, 5.0V, 5.25V
60 TC = -30C TC = +25C 50 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
60
60
PLO = -3dBm 50 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 50 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
3RF-3 LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc89
3RF-3LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
PRF = -5dBm
MAX19997A toc90
3RF-3LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
95 PRF = -5dBm
95
PRF = -5dBm
95
3RF-3LO RESPONSE (dBc)
3RF-3LO RESPONSE (dBc)
85
85
3RF-3LO RESPONSE (dBc)
85
75
75
75
65 TC = -30C, +25C, +85C 55 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
65
PLO = -3dBm, 0dBm, +3dBm
65
VCC = 4.75V, 5.0V, 5.25V
55 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
55 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
INPUT P1dB vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc92
INPUT P1dB vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc93
INPUT P1dB vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
13 VCC = 5.25V 12 INPUT P1dB (dBm) VCC = 5.0V
13
13
12 INPUT P1dB (dBm)
TC = +85C
12 INPUT P1dB (dBm)
PLO = -3dBm, 0dBm, +3dBm
11
11
11
10 TC = -30C 9 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 TC = +25C
10
10 VCC = 4.75V
9 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
9 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
20
______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
CHANNEL ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc95
MAX19997A
CHANNEL ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc96
CHANNEL ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc97
55
55
55
CHANNEL ISOLATION (dB)
CHANNEL ISOLATION (dB)
45
45
CHANNEL ISOLATION (dB)
50
50
50
45
40 TC = -30C, +25C, +85C
40 PLO = -3dBm, 0dBm, +3dBm 35
40 VCC = 4.75V, 5.0V, 5.25V 35
35
30 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
30 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
30 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
LO LEAKAGE AT IF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc98
LO LEAKAGE AT IF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc99
LO LEAKAGE AT IF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc100
0
0
0
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT (dBm)
-10
-10
-10
TC = -30C, +25C, +85C -20
PLO = -3dBm, 0dBm, +3dBm -20
VCC = 4.75V, 5.0V, 5.25V -20
-30 1850 2050 2250 2450 LO FREQUENCY (MHz) 2650
-30 1850 2050 2250 2450 LO FREQUENCY (MHz) 2650
-30 1850 2050 2250 2450 LO FREQUENCY (MHz) 2650
RF-TO-IF ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
TC = +85C RF-TO-IF ISOLATION (dB)
MAX19997A toc101
RF-TO-IF ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc102
RF-TO-IF ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc103
30
30
30
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
20 TC = +25C TC = -30C
20 PLO = -3dBm, 0dBm, +3dBm
20 VCC = 4.75V, 5.0V, 5.25V
10 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
10 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
10 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
______________________________________________________________________________________
21
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc104
LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc105
LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc106
-10 LO LEAKAGE AT RF PORT (dBm)
-10 LO LEAKAGE AT RF PORT (dBm)
-10 LO LEAKAGE AT RF PORT (dBm)
-20
-20
-20
-30
-30
-30
-40 TC = -30C, +25C, +85C -50 1900 2100 2300 2500 2700 LO FREQUENCY (MHz) 2900
-40 PLO = -3dBm, 0dBm, +3dBm -50 1900 2100 2300 2500 2700 LO FREQUENCY (MHz) 2900
-40 VCC = 4.75V, 5.0V, 5.25V -50 1900 2100 2300 2500 2700 LO FREQUENCY (MHz) 2900
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc107
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc108
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc109
-10 2LO LEAKAGE AT RF PORT (dBm)
-10 2LO LEAKAGE AT RF PORT (dBm)
-10 2LO LEAKAGE AT RF PORT (dBm)
-20
-20
-20
-30
-30
-30
-40
TC = -30C, +25C, +85C
-40
PLO = -3dBm, 0dBm, +3dBm
-40
VCC = 4.75V, 5.0V, 5.25V
-50 1900 2100 2300 2500 2700 LO FREQUENCY (MHz) 2900
-50 1900 2100 2300 2500 2700 LO FREQUENCY (MHz) 2900
-50 1900 2100 2300 2500 2700 LO FREQUENCY (MHz) 2900
22
______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
RF PORT RETURN LOSS vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc110
MAX19997A
IF PORT RETURN LOSS vs. IF FREQUENCY (RF > LO, STANDARD RF BAND)
fLO = 2250MHz VCC = 4.75V, 5.0V, 5.25V 10 15 20 25 30
MAX19997A toc111
IF PORT RETURN LOSS vs. IF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc112
0 5 RF PORT RETURN LOSS (dB) 10 15 20 25 30 2200 PLO = -3dBm, 0dBm, +3dBm
fIF = 350MHz
0 5 IF PORT RETURN LOSS (dB)
0 5 IF PORT RETURN LOSS (dB) fLO = 2250MHz 10 fLO = 2650MHz 15 20 25 30 fLO = 1850MHz
2400 2600 2800 RF FREQUENCY (MHz)
3000
50
140
230 320 410 IF FREQUENCY (MHz)
500
50
140
230 320 410 IF FREQUENCY (MHz)
500
LO PORT RETURN LOSS vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc113
SUPPLY CURRENT vs. TEMPERATURE (TC) (RF > LO, STANDARD RF BAND)
VCC = 5.25V 390 SUPPLY CURRENT (mA)
MAX19997A toc114
0
400
LO PORT RETURN LOSS (dB)
5
PLO = +3dBm
10
380
15 PLO = -3dBm 20 PLO = 0dBm
370 VCC = 4.75V VCC = 5.0V
360
25 1900 2150 2400 2650 2900 LO FREQUENCY (MHz) 3150 3400
350 -35 -15 5 25 45 TEMPERATURE (C) 65 85
______________________________________________________________________________________
23
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc115
CONVERSION GAIN vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
VCC = 3.3V 10 CONVERSION GAIN (dB) 9 8 7 6 5 PLO = -3dBm, 0dBm, +3dBm
MAX19997A toc116
CONVERSION GAIN vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc117
11 TC = -30C 10 CONVERSION GAIN (dB) 9 8 7 6 5 2200 2400 2600 2800 TC = +85C TC = +25C VCC = 3.3V
11
11 10 CONVERSION GAIN (dB) 9 8 7 6 5 VCC = 3.0V, 3.3V, 3.6V
3000
2200
2400
2600
2800
3000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc118
INPUT IP3 vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
VCC = 3.3V 21 INPUT IP3 (dBm)
MAX19997A toc119
INPUT IP3 vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
PRF = -5dBm/TONE 21 INPUT IP3 (dBm)
MAX19997A toc120 MAX19997A toc123
22 VCC = 3.3V 21 INPUT IP3 (dBm) TC = +85C TC = +25C 20 PRF = -5dBm/TONE
22 PRF = -5dBm/TONE PLO = -3dBm, 0dBm, +3dBm
22
20
20
19
19
19 VCC = 3.0V, 3.3V, 3.6V
18
TC = -30C
18
18
17 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
17 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
17 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc121
NOISE FIGURE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
VCC = 3.3V
MAX19997A toc122
NOISE FIGURE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
13 12 NOISE FIGURE (dB) 11 10 9 8 7 VCC = 3.0V, 3.3V, 3.6V
13 12 NOISE FIGURE (dB) 11 10 9 8 7 2200 2400 2600 TC = +25C TC = +85C
VCC = 3.3V
13 12 NOISE FIGURE (dB) 11 10 9 8 7 PLO = -3dBm, 0dBm, +3dBm
TC = -30C 2800 3000
2200
2400
2600
2800
3000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
24
______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
2RF-2LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc124
MAX19997A
2RF-2LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc125
2RF-2LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
PRF = -5dBm VCC = 3.6V
MAX19997A toc126 MAX19997A toc132 MAX19997A toc129
90
VCC = 3.3V TC = -30C
PRF = -5dBm
90
VCC = 3.3V PLO = +3dBm
PRF = -5dBm
90
2RF-2LO RESPONSE (dBc)
2RF-2LO RESPONSE (dBc)
2RF-2LO RESPONSE (dBc)
80
80
80
70
70
70
60 TC = +85C 50 2200 2400
TC = +25C
60
PLO = 0dBm PLO = -3dBm
60
VCC = 3.3V VCC = 3.0V
50 2600 2800 3000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz)
50 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
3RF-3LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc127
3RF-3LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc128
3RF-3LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
95 PRF = -5dBm
95 VCC = 3.3V 3RF-3LO RESPONSE (dBc) 85
PRF = -5dBm
95 VCC = 3.3V 3RF-3LO RESPONSE (dBc) 85
PRF = -5dBm
3RF-3LO RESPONSE (dBc)
85 VCC = 3.0V, 3.3V, 3.6V 75
75
75
PLO = -3dBm, 0dBm, +3dBm
65
65
65
55 TC = -30C, +25C, +85C 45 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
55
55
45 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
45 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc130
INPUT P1dB vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
VCC = 3.3V 9 INPUT P1dB (dBm) PLO = -3dBm, 0dBm, +3dBm
MAX19997A toc131
INPUT P1dB vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
10 VCC = 3.3V VCC = 3.6V
10 VCC = 3.3V 9 INPUT P1dB (dBm) TC = +85C
10
9 INPUT P1dB (dBm)
8
8
8
7 TC = +25C
7
7 VCC = 3.0V
6
TC = -30C
6
6
5 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
5 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
5 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
______________________________________________________________________________________
25
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
CHANNEL ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc133
CHANNEL ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
VCC = 3.3V CHANNEL ISOLATION (dB) 50
MAX19997A toc134
CHANNEL ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc135
55 VCC = 3.3V CHANNEL ISOLATION (dB) 50
55
55
CHANNEL ISOLATION (dB)
50
45
45
45
40 TC = -30C, +25C, +85C
40 PLO = -3dBm, 0dBm, +3dBm
40 VCC = 3.0V, 3.3V, 3.6V
35
35
35
30 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
30 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
30 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc136
LO LEAKAGE AT IF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
VCC = 3.3V
MAX19997A toc137
LO LEAKAGE AT IF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc138
0 TC = -30C -10
VCC = 3.3V
0
0
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT (dBm)
-10
-10
-20 TC = +85C TC = +25C -30 1850 2050 2250 2450 2650 LO FREQUENCY (MHz)
-20 PLO = -3dBm, 0dBm, +3dBm
-20 VCC = 3.0V, 3.3V, 3.6V
-30 1850 2050 2250 2450 2650 LO FREQUENCY (MHz)
-30 1850 2050 2250 2450 2650 LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc139
RF-TO-IF ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
VCC = 3.3V
MAX19997A toc140
RF-TO-IF ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc141
30 TC = +85C RF-TO-IF ISOLATION (dB) 25
VCC = 3.3V
30
30
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
25
25
20
TC = +25C
20 PLO = -3dBm, 0dBm, +3dBm 15
20
VCC = 3.0V, 3.3V, 3.6V
15
TC = -30C
15
10 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
10 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
10 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
26
______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc142
MAX19997A
LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
VCC = 3.3V
MAX19997A toc143
LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc144
-10 LO LEAKAGE AT RF PORT (dBm)
VCC = 3.3V
-10 LO LEAKAGE AT RF PORT (dBm)
-10 LO LEAKAGE AT RF PORT (dBm)
-20 TC = -30C, +25C, +85C -30
-20
-20
-30
-30
-40
-40 PLO = -3dBm, 0dBm, +3dBm
-40 VCC = 3.0V, 3.3V, 3.6V -50
-50 1900 2100 2300 2500 2700 2900 LO FREQUENCY (MHz)
-50 1900 2100 2300 2500 2700 2900 LO FREQUENCY (MHz)
1900
2100
2300
2500
2700
2900
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc145
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
VCC = 3.3V
MAX19997A toc146
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc147
-10 2LO LEAKAGE AT RF PORT (dBm)
VCC = 3.3V
-10 2LO LEAKAGE AT RF PORT (dBm)
-10 2LO LEAKAGE AT RF PORT (dBm)
-20
-20
-20
-30
-30
-30
-40 TC = -30C, +25C, +85C -50 1900 2100 2300 2500 2700 2900 LO FREQUENCY (MHz)
-40
PLO = -3dBm, 0dBm, +3dBm
-40
VCC = 3.0V, 3.3V, 3.6V
-50 1900 2100 2300 2500 2700 2900 LO FREQUENCY (MHz)
-50 1900 2100 2300 2500 2700 2900 LO FREQUENCY (MHz)
______________________________________________________________________________________
27
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25C, unless otherwise noted.)
RF PORT RETURN LOSS vs. RF FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc148
IF PORT RETURN LOSS vs. IF FREQUENCY (RF > LO, STANDARD RF BAND)
fLO = 2250MHz IF PORT RETURN LOSS (dB)
MAX19997A toc149
IF PORT RETURN LOSS vs. IF FREQUENCY (RF > LO, STANDARD RF BAND)
VCC = 3.3V IF PORT RETURN LOSS (dB) fLO = 2650MHz
MAX19997A toc150
0 5 RF PORT RETURN LOSS (dB) 10 15 20 25
VCC = 3.3V
0
0
fIF = 350MHz PLO = -3dBm, 0dBm, +3dBm
10
10
20 VCC = 3.0V, 3.3V, 3.6V 30
20 fLO = 1850MHz 30 fLO = 2250MHz
30 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
40 50 140 230 320 410 500 IF FREQUENCY (MHz)
40 50 140 230 320 410 500 IF FREQUENCY (MHz)
LO PORT RETURN LOSS vs. LO FREQUENCY (RF > LO, STANDARD RF BAND)
MAX19997A toc151
SUPPLY CURRENT vs. TEMPERATURE (TC) (RF > LO, STANDARD RF BAND)
VCC = 3.6V 290 SUPPLY CURRENT (mA)
MAX19997A toc152
0 VCC = 3.3V PLO = +3dBm LO PORT RETURN LOSS (dB) 5 10
300
280
15 PLO = -3dBm PLO = 0dBm 20
270
VCC = 3.3V
260
VCC = 3.0V
25 1900 2150 2400 2650 2900 3150 3400 LO FREQUENCY (MHz)
250 -35 -15 5 25 45 65 85 TEMPERATURE (C)
28
______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
Pin Description
PIN 1 2, 5, 6, 8, 12, 15, 18, 23, 28, 31, 34 3, 7, 20, 22, 24-27 4, 10, 16, 21, 30, 36 9 11 13, 14 17 19 29 32, 33 35 NAME RFMAIN GND GND VCC RFDIV IFD_SET IFD+, IFDLO_ADJ_D LO LO_ADJ_M IFM-, IFM+ IFM_SET FUNCTION Main Channel RF Input. Internally matched to 50. Requires an input DC-blocking capacitor. Ground. Not internally connected. Ground these pins or leave unconnected. Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together. Power Supply. Connect bypass capacitors as close as possible to the pin (see the Typical Application Circuit). Diversity Channel RF Input. Internal matched to 50. Requires a DC-blocking capacitor. IF Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the diversity IF amplifier. Diversity Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit). LO Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the diversity LO amplifier. Local Oscillator Input. This input is internally matched to 50. Requires an input DCblocking capacitor. LO Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the main LO amplifier. Main Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit). IF Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the main IF amplifier. Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground vias are also required to achieve the noted RF performance.
MAX19997A
--
EP
Detailed Description
The MAX19997A dual, downconversion mixer provides high linearity and low noise figure for a multitude of 1800MHz to 2900MHz base-station applications. The device fully supports both low-side and high-side LO injection architectures for the 2300MHz to 2900MHz WiMAX, LTE, WCS, and MMDS bands. WCDMA, cdma2000, and PCS1900 applications utilizing highside LO injection architectures are also supported by adding one additional tuning element (a shunt inductor) on each RF port. The MAX19997A operates over an LO range of 1950MHz to 3400MHz and an IF range of 50MHz to 500MHz. Integrated baluns and matching circuitry allow 50 single-ended interfaces to the RF and LO ports. The integrated LO buffer provides a high drive
level to the mixer core, reducing the LO drive required at the MAX19997A's input to a range of -3dBm to +3dBm. The IF port incorporates a differential output, which is ideal for providing enhanced 2RF-2LO (lowside injection) and 2LO-2RF (high-side injection) performance.
RF Input and Balun
The MAX19997A's two RF inputs (RFMAIN and RFDIV) provide a 50 match when combined with a series DCblocking capacitor. This DC-blocking capacitor is required as the input is internally DC shorted to ground through each channel's on-chip balun. When using a 22pF DC-blocking capacitor, the RF port input return loss is typically 15dB over the RF frequency range of 2600MHz to 2900MHz.
______________________________________________________________________________________
29
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer MAX19997A
The MAX19997A's RF range can be further extended down to 1800MHz by adding one additional tuning element on each RF port. For 1950MHz RF applications, connect a 12nH shunt inductor from pins 1 and 9 to ground. Also, change the value of the DC-blocking capacitors (C1 and C8) from 22pF to 1pF. See the Typical Application Circuit for details.
Applications Information
Input and Output Matching
The RF and LO inputs are internally matched to 50. No matching components are required for RF frequencies ranging from 2400MHz to 2900MHz. RF and LO inputs require only DC-blocking capacitors for interfacing. If desired, the RF band can be extended down to 1800MHz by adding two external matching components on each RF port. See the Typical Application Circuit and Table 2 for details. The IF output impedance is 200 (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50 singleended output (see the Typical Application Circuit).
LO Input, Buffer, and Balun
A two-stage internal LO buffer allows a wide input power range for the LO drive. All guaranteed specifications are for an LO signal power from -3dBm to +3dBm. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO input to the IF outputs are integrated on-chip.
High-Linearity Mixer
The core of the MAX19997A is a pair of doublebalanced, high-performance passive mixers. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF amplifiers, the cascaded IIP3, 2RF-2LO rejection, and NF performance are typically +24dBm IIP3, -67dBc, and 10.3dB, respectively for low-side LO injection architectures covering the 2300MHz to 2900MHz band. Cascaded performance levels are comparable for high-side LO injection architectures; IIP3, 2LO-2RF rejection, and NF levels are typically rated at +24dBm IIP3, -73dBc, and 10.4dB, respectively over the same 2300MHz to 2900MHz band.
Reduced-Power Mode
Each channel of the MAX19997A has two pins (LO_ADJ_, IF_SET) that allow external resistors to set the internal bias currents. Nominal values for these resistors are shown in Tables 1 and 2. Larger-value resistors can be used to reduce power dissipation at the expense of some performance loss. If 1% resistors are not readily available, 5% resistors may be substituted. Significant reductions in power consumption can be realized by operating the mixer with an optional supply voltage of +3.3V. Doing so reduces the overall power consumption by up to 53%. See the +3.3V Supply AC Electrical Characteristics table and the relevant +3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance tradeoffs.
Differential IF Output Amplifier
The MAX19997A mixers have an IF frequency range of 50MHz to 500MHz. The differential, open-collector IF output ports require external pullup inductors to VCC. These pullup inductors are also used to resonate out the parasitic shunt capacitance of the IC, PCB components, and PCB to provide an optimized IF match at the frequency of interest. Note that differential IF outputs are ideal for providing enhanced 2RF-2LO and 2LO-2RF rejection performance. Single-ended IF applications require a 4:1 balun to transform the 200 differential output impedance to a 50 single-ended output. After the balun, voltage standing-wave ratio (VSWR) is typically 1.2:1.
Layout Considerations
A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX19997A evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.
30
______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
Power-Supply Bypassing
Proper voltage supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the capacitors shown in the Typical Application Circuit. path to the die. It is important that the PCB on which the MAX19997A is mounted be designed to conduct heat from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.
MAX19997A
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX19997A's 36-pin thin QFN-EP package provides a low thermal-resistance
Table 1. Standard RF Band Application Circuit Component Values (Optimized for Frequencies Ranging from 2400MHz to 2900MHz)
DESIGNATION C1, C8 C14 C4, C9, C13, C15, C17, C18 C10, C11, C12, C19, C20, C21 L1, L2, L3, L4 L7, L8 QTY 2 1 6 6 4 0 DESCRIPTION 22pF microwave capacitors (0402) 1.5pF microwave capacitor (0402) 0.01F microwave capacitors (0402) 82pF microwave capacitors (0603) 120nH wire-wound high-Q inductors* (0805) Not used 750 1% resistors (0402). Use for VCC = +5.0V applications. Larger values can be used to reduce power at the expense of some performance loss. See the Typical Operating Characteristics section. R1, R4 2 1.1k 1% resistors (0402). Use for VCC = +3.3V applications. Larger values can be used to reduce power at the expense of some performance loss. See the Typical Operating Characteristics section. 698 1% resistors (0402). Use for VCC = +5.0V applications. Larger values can be used to reduce power at the expense of some performance loss. See the Typical Operating Characteristics section. R2, R5 2 845 1% resistors (0402). Use for VCC = +3.3V applications. Larger values can be used to reduce power at the expense of some performance loss. See the Typical Operating Characteristics section. 0 resistors (1206). These resistors can be increased in value to reduce power dissipation in the device, but reduces the compression point. Full P1dB performance achieved using 0. 4:1 IF baluns (TC4-1W-17+) MAX19997A IC (36 TQFN-EP) Digi-Key Corp. Digi-Key Corp. COMPONENT SUPPLIER Murata Electronics North America, Inc. Murata Electronics North America, Inc. Murata Electronics North America, Inc. Murata Electronics North America, Inc. Coilcraft, Inc. -- Digi-Key Corp.
Digi-Key Corp.
R3, R6 T1, T2 U1
2 2 1
Digi-Key Corp. Mini-Circuits Maxim Integrated Products, Inc.
*Use 390nH (0805) inductors for an IF frequency of 200MHz. Contact the factory for details.
______________________________________________________________________________________
31
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer MAX19997A
Table 2. Extended RF Band Application Circuit Component Values (Optimized for 1950MHz Operation)
DESIGNATION C1, C8 C14 C4, C9, C13, C15, C17, C18 C10, C11, C12, C19, C20, C21 L1, L2, L3, L4 L7, L8 QTY 2 1 6 6 4 2 DESCRIPTION 1pF microwave capacitors (0402) 1.5pF microwave capacitor (0402) 0.01F microwave capacitors (0402) 82pF microwave capacitors (0603) 120nH wire-wound high-Q inductors* (0805) 12nH inductor (0402). Use to improve RF match from 1800MHz to 2400MHz. Connect L7 and L8 from pins 1 and 9, respectively, to ground. 750 1% resistors (0402). Use for VCC = +5.0V applications. Larger values can be used to reduce power at the expense of some performance loss. See the Typical Operating Characteristics section. 698 1% resistors (0402). Use for VCC = +5.0V applications. Larger values can be used to reduce power at the expense of some performance loss. See the Typical Operating Characteristics section. 0 resistors (1206). These resistors can be increased in value to reduce power dissipation in the device, but reduces the compression point. Full P1dB performance achieved using 0. 4:1 IF balun (TC4-1W-17+) MAX19997A IC (36 TQFN-EP) COMPONENT SUPPLIER Murata Electronics North America, Inc. Murata Electronics North America, Inc. Murata Electronics North America, Inc. Murata Electronics North America, Inc. Coilcraft, Inc. Coilcraft, Inc.
R1, R4
2
Digi-Key Corp.
R2, R5
2
Digi-Key Corp.
R3, R6 T1, T2 U1
2 2 1
Digi-Key Corp. Mini-Circuits Maxim Integrated Products, Inc.
*Use 390nH (0805) inductors for an IF frequency of 200MHz. Contact the factory for details.
32
______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer MAX19997A
Typical Application Circuit
C19
T1 VCC L1* R3 C21 IF MAIN OUTPUT
L2* 4:1 R1 VCC C20 R2 C17 VCC
IFM_SET
GND
LO_ADJ_M
C18
IFM+
IFM-
GND
31
35
34
C1 RF MAIN INPUT
+
RFMAIN GND GND 1 2 3 4 5 6 7 8 9 EXPOSED PAD 27 GND GND GND GND GND GND VCC VCC GND LO C14 C15
36
33
32
MAX19997A
30
29
28
26 25 24 23 22 21 20 19
L7**
VCC VCC C4 GND GND GND GND RF DIV INPUT C8 RFDIV
GND
VCC
VCC
LO
15
11
12
10
13
14
IFD_SET
GND
GND
IFD+
IFD-
VCC
C9
R4
LO_ADJ_D
GND
VCC
VCC
16
17
18
L8**
R5 C11 *USE 390nH (0805) INDUCTORS FOR AN IF FREQUENCY OF 200MHz. CONTACT FACTORY FOR DETAILS. **CONNECT INDUCTORS TO IMPROVE RF MATCH FROM 1800MHz TO 2400MHz. SEE TABLE 2 FOR DETAILS. L4* VCC R6 C12
VCC
C13
T2
L3* 4:1
IF DIV OUTPUT
C10
______________________________________________________________________________________
33
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer MAX19997A
Pin Configuration/ Functional Block Diagram
TOP VIEW
36 VCC 29 LO_ADJ_M 35 IFM_SET
Chip Information
PROCESS: SiGe BiCMOS
33 IFM+
32 IFM-
34 GND
31 GND
28 GND
30 VCC
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.
27 GND GND GND GND GND GND VCC GND LO
+
RFMAIN GND GND VCC GND GND GND GND RFDIV 1 2 3 4 5 6 7 8 9 EXPOSED PAD
MAX19997A
PACKAGE TYPE 36 Thin QFN-EP
PACKAGE CODE T3666+2
DOCUMENT NO. 21-0141
26 25 24 23 22 21 20 19
10
11
12
13
14
15
16
17 LO_ADJ_D
IFD+
IFD_SET
GND
IFD-
GND
VCC
VCC
6mm x 6mm THIN QFN (EXPOSED PAD)
EXPOSED PAD ON THE BOTTOM OF THE PACKAGE.
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
34 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 (c) 2008 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.
GND
18


▲Up To Search▲   

 
Price & Availability of MAX19997AETX

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X